
CSCI 1320 Java Commands

Hello, World!

1 // imports go here

2 public class Hello {

3

4 public static void main(String [] args) {

5 System.out.println("Hello, World!"); // yay!

6 }

7

8 /*

9 additional methods go here

10 ... after main() but inside the class

11 ... but not inside a comment!

12 */

13 }
Link to Code

Expected output (on screen):

Hello, World!

It is a time-honored tradition in computer science to begin any new endeavor by creating the simplest
possible working example. When writing a program that often involves getting the computer to display
something. So, this is a Java “Hello, World” program. The idea is that if you can get this program to
compile and run on your computer then you have all the pieces you need to begin writing more complex
progams. Some things to note:

• Comments are used to provide notes/annotation to be read by other programmers. Comments are
ignored by the compiler. To create a multi-line comment use /* at the beginning and */ at the end.
A single line comment starts with // and goes to the end of the line.

• By convention each Java source file contains a single class that has the same name as the file. So,
this program would be saved in a text file named Hello.java.

• When you run a Java program, it always starts executing statements in the method called main().

• You can have other methods besides main(). Those will appear after main() (not inside of it) and
inside the class (not after it).

• If you need to import any classes, the import statements go before the class (but not inside of
comments).

Declaring Variables

1 float x;

2 double y,z;

3 int ans;

4 char let;

5 String name;

6 boolean isFun;

x ? ans ?

y ? let ?

z ? name ?

isFun ?

Declaring a variable specifies its type and name and reserves a location in the computer’s memory to
hold the variable. A variable whose type is float or double is used to hold numbers with decimal
points. Variables whose type is int holds numbers without decimal places. A char variable holds a single
character which can be a letter, symbol or a digit. A String variable holds a series of individual characters.
A boolean variable hold the value true or false. Reserving space for a variable does not specify what
value is to be held in the variable.

Initializing Variables

source/Hello.java

1 y= 0.1;

2 z= 7.5 + y;

3 name= "Fred"; // String use double quotes

4 let= ’R’; // chars use single quotes

5 a= (int) x;

6 a= a + 1;

7 isFun= true;

y 0.1 name ”Fred”

z 7.6 isFun true

a 8

Initializing a variable means “giving it a value for the first time.” It is possible to both declare and initialize
a variable on the same line, though there are times you want those actions to be separated. Initializing a
variable is accomplish through use of the assignment operator (i.e., =). The assignment operator takes a
value (on the right) and places it into the variable (on the left). The statement a= (int) x; is an example
of type-casting (temporarily changing the type of an expression). When we type-cast a double to be an
int the result is that the decimal places get chopped off. The statement a= a + 1; highlights the different
between the assignment operator and the mathematical concept of “equals”. In this case the variable a is
incremented by 1.

Displaying Values

1 System.out.println("Hello");

2 System.out.print("Answer is: ");

3 System.out.println(a);

4 System.out.println("Name is: "+name);

Output of statements assuming
variables have values from
previous examples:

Hello

Answer is: 8

Name is: Fred

The println (pronounced “print line”) and print commands are used to display results to the con-
sole/screen. Both commands require you provide a string in the parentheses and both will display the
provided string. After displaying the value println performs an extra step of displaying a newline char-
acter (so future output will appear on the following line).

Getting Input

1 import java.util.Scanner; // at top of file

2 . . .

3 Scanner kb;

4 kb= new Scanner(System.in);

5 int a;

6 double x;

7 String str1,str2;

8

9 System.out.print("Enter age: ");

10 a= kb.nextInt();

11 kb.nextLine(); // toss out extra newline

12

13 System.out.print("Enter num: ");

14 x= kb.nextDouble();

15 kb.nextLine(); // toss out extra newline

16

17 System.out.print("Enter word: ");

18 str1= kb.next();

19 kb.nextLine(); // toss out extra newline

20

21 System.out.print("Enter sentence: ");

22 str2= kb.nextLine();

23 // .nextLine() tosses out extra newline

a ?

x ?

str1 ?

str2 ?

Enter age: 7

Enter num: 2.5

Enter word: hi

Enter sentence: How are you?

a 7

x 2.5

str1 ”hi”

str2 ”How are you?”

2

The Scanner class can be used to obtain input from various sources. In this example we are reading
from keyboard (System.in). The commands .nextInt(), .nextDouble(), and .next() all read the next
available token and stop reading at any trailing whitespace characters; the read value is then converted to
the specified type (int, double, String, respectively). To get the data into the input buffer to be read the
user must type the data and then press then Enter key (which generates a newline character . . . which
is classified as whitespace). So, kb.nextInt() reads the number, but stops at the newline character. To
prevent possible issue later it is good form to toss out the extra character. The .nextLine() command
reads more than a token; it reads an entire line and tosses out the trailing newline character.

Integer Arithmetic

1 int a,b,c,d,e;

2 a= 7;

3 b= -1;

4 c= a + b * 3; // 4

5 d= b - a / 3; // -3

6 e= a % 3; // 1

a 7

b -1

c 4

d -3

e 1

Integer arithmetic in Java is fairly simple. You can use arithmetic operators (−, +, ∗, /) to perform addition,
subtraction, multiplication, and division, respectively. The order of operations works as in algebra. NOTE:
Dividing integers has a wrinkle in that in Java, an int divided by an int is always an int. In the example,
a/3 results in 2 (because 3 goes into 7 two times with a reminder of 1). The modulus operator can be used
to extract the remainder portion of integer division: a % 3 produces 1 (the remainder when 7 is divided
by 3). Parentheses can be used to override order of operations.

Floating Point Arithmetic

1 double a,b,c,d;

2 a= 4.0;

3 b= -2.2;

4 c= a + b * 3; // -2.6

5 d= Math.sqrt(a) + b; // -0.2

a 4.0

b -2.2

c -2.6

d -0.2

Floating point arithmetic works like integer arithmetic except that division does not produce an integer.
In addition there are a host of functions provided in the Math library to provide many useful result.
This example shows how to find the square root of a number. For a complete list of Math functions see:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html.

Strings

1 int num1,num2;

2 String one, two, three;

3 one= "Amy";

4 two= "Hi, there!";

5 if (one == "Amy") { // nope!

6 System.out.println("Greetings!");

7 }

8 if (one.equals("Amy")) { // yep!

9 System.out.println("Hi, Amy!");

10 }

11 num1= one.length();

12 System.out.println(one.charAt(2));

13 num2= one.indexOf("the");

14 System.out.println(one.toUpperCase());

15 three= two.substring(4,7)+"n";

num1 3

num2 4

one ”Amy”

two ”Hi, there!”

three ”then”

Expected output:

Hi, Amy!

y

FRED

3

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Variables of type String are actually complex objects that require special treatment. They also come
with quite a few built-in methods for manipulating them. To compare strings do not use == because you
will always get a false result (because it compares their addresses). Instead use the .equals() method
as illustrated. For explanations of the methods used in this example and for a complete list of methods
available for String variables see: https://docs.oracle.com/javase/8/docs/api/java/lang/String.
html. NOTE: When the + operator is applied to strings is performs string concatenation, which is the
fancy computer science terms that means “stick them together”.

If Statements

1 if (a < 0) {

2 // do this if true

3 }

4 else {

5 // do this if false

6 }

The if-statement allows you to select one of two alternate actions based on a comparison. After the word
“if” you must have, in parentheses, a boolean expression which evaluates to either true of false. If the
expression evaluates to true the statements in the first section will happen, otherwise the statements in the
else part will happen. Keep in mind the statements in either section could be if-statements themselves
(which is called “nested ifs”). The else portion of the statement is optional. If else is omitted and the
boolean expression is false then the statements are simply skipped.

Boolean Expressions

1 int a,b;

2 boolean c,d,e,f,g;

3 a= 7;

4 b= -1;

5 c= true;

6 d= a<b;

7 e= a<b || a>0;

8 f= a<=b && a!=0;

9 g= !isCool && a==7;

a 7

b -1

c true

d false

e true

f false

g true

A boolean expression is an expression that evaluates to either true or false. based on a comparison. They
can be built using a combination of variables, relational operators, boolean operators, and constants.
Relational operators (<, <=, >, >=, ==, ! =) compare values of the same type and produce a boolean
result. NOTE: == compares values for equality and is different than = (which is the assignment operator).
Also, ! = means “not equal”. Boolean operators (&&, ||, !) act on boolean values and produce a boolean
result. NOTE: && is read as “and” and is true only if both parts are true. The boolean operator || is read
as “or” and is false only if both parts are false. The operator ! is read as “not” and when placed in front
of a boolean expression toggles its value. The order in which boolean expressions are evaluated is 1) !, 2)
<, <=, >, >=, 3) ==, !=, 4) &&, 5) ||. Of course, parentheses override everything so used them if unsure.

While Loops

1 while (a < 0) {

2 // loop body

3 }

4

5 do {

6 // loop body

7 } while (a < 0);

4

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

A while loop is used to repeat a group of actions and begins with the keyword while followed by a boolean
expression in parentheses. The Java statements between the {}’s are run if the boolean expression evaluates
to true. When the statements have been executed the boolean expression is revaluated to determine whether
or not the statements should be performed. If the expression evaluates to false the statements are skipped.
For this reason the boolean expression must contain a variable that gets changed by the statements in the
loop (or else suffer the fate of a so-called “infinite loop”). The do-while loop works in exactly the same
way as a while loop except that the loop body is performed once no matter what and the evaluation of the
boolean expression happens at the end of the loop. The keyword do marks the beginning of the section to
be repeated in the case the boolean expression evaluates to true.

For Loops

1 int i;

2 for (i=0; i<5; i=i+1) {

3 System.out.print(""+i+",");

4 }

Expected output:

0,1,2,3,4,

A for loop is a specialize version of a while loop that begins with the word for and contains three statements
in parentheses: 1) a statement to be executed once before the loop begins, 2) a boolean expression which
when true causes the loop body to be run (just like a while loop), and 3) an “update” statement to be
run each time the loop body completes. Normally, for-loops are used in situations where the number of
times the loop should happen is known prior to the start of the loop. The example above would execute
the statements in the loop body 10 times.

Arrays

1 int i;

2 double [] a; // declare array name

3 a= new double[5]; // reserve 10 doubles

4 a[0]= 1.2;

5 for (i=1; i<5; i++) {

6 a[i]= a[0]+i;

7 }

a −→
[0] [1] [2] [3] [4]

1.2 2.2 3.2 4.2 5.2

An array is a “big” variable that combines multiple variables of the same type under one name. The
individual variables are distinguished from one another by their position in the array (starting with 0).
Arrays are often used in conjunction with for-loops. In the example above the variable a refers to 5 double
variables whose names are a[0], a[1], . . . , a[4]. NOTE: The variable a[0] is a variable of type double
and can be used like any other variable of type double. To act on all values in an array you must do it one
variable at a time. The variable a (created on line 2) is separate from the block of 5 variables (created on
line 3). The variable a is a reference (i.e., contains an address/arrow) to the array block.

Methods

5

1 public static void showSum(double a, double b) {

2 double c;

3 c= a + b;

4 System.out.println("Sum is: "+c);

5 }

6

7 public static double calcSum(double a, double b) {

8 double c;

9 c= a + b;

10 return c;

11 }

12

13 // To call these methods:

14 double x= 7.5;

15 showSum(x,1.0);

16 showSum(x*2.0,x-2.0);

17 x= calcSum(1.0,2.2); // x= 3.2

18 System.out.println(x);

Expected output:

Sum is: 8.5

Sum is: 20.5

3.2

Writing a method allows you to give a name to a section of code. The section of code can then be invoked
at any time by simply using the name of the method. It is useful to name sections of code to organize a
large program or for sections that will need to be invoked multiple times. To define a method start with
keywords public static followed by the return type followed by the name of the method followed by the
formal parameter list. Names of methods should be verbs that describe the action of the method. The
formal parameter list declares variables that must be filled in order for the method to do it job. In this
example the methods specify two formal parameters of type double named a and b. The methods must be
called in order for them to run. This example shows two calls to showSum and one call to calcSum. When
calling a method you must specify the actual parameters that will be used to fill in the formal parameters
for that particular call. So, in the first call the formal parameter a takes on the value 7.5 and the formal
parameter b takes on the value 1.0. The calcSum method demonstrates a method that returns a value.
The return type is specified prior to the method name. In method that returns a value you must 1) have
a return statement to indicate the value to the returned, and 2) do something with the returned value. In
the example, the local variable c is returned and the returned value is stored into the variable x.

Formatted Output

1 double x= 7.5;

2 String str= "Fred";

3 int a= 2;

4

5 System.out.printf("%s is %d\n",str,a);

6 System.out.printf("A%5d %4.2fB\n",a,x);

7 System.out.printf("A%-5d %4.2fB\n",a,x);

Expected output:

Fred is 2

A 2 7.50B

A2 7.50B

It can be useful to to produce formatted output using .printf(). The printf() method’s first parameter
is a format string that contains placeholders: %s for strings, %d for ints, and %f for doubles/floats. The
remaining parameters are values that will be plugged in to the placeholders. A number number right after
the % in a format string is called a field width specifier and is used to specify how much space to leave for
the value. In this example, %4.2f leaves 4 spaces for a floating point number that will display 2 decimal
places. Placeholders with a field width specifier right justify the value by default. To left justify place a
value put a negative sign in front of the number.

Reading Text Files: Scanner

6

1 // requires some imports:

2 import java.util.Scanner;

3 import java.io.FileNotFoundException;

4 import java.io.FileInputStream;

5

6 public static double sumFile(String filename) throws

FileNotFoundException {

7 Scanner numFile;

8 double num,total=0.0;

9

10 numFile= new Scanner(new FileInputStream(filename));

11 while (numFile.hasNextLine()) {

12 num= numFile.nextDouble();

13 total= total + num;

14 numFile.nextLine(); // toss out \n

15 }

16 numFile.close();

17 return total;

18 }

Suppose datafile looks like this:

1.5

10.2

2.3

5.2

Expected return value: 19.2

The Scanner class can be used to read data from files in addition to reading values from a keyboard. When
opening the file simply indicate the filename as a FileInputStream object rather than using System.in.
The Scanner method .hasNextLine() will return if there is more to be read and false otherwise. Then
proceed to read from the file just as if you reading from the keyboard. Be sure to close the file when you
are finished. Java requires that we announce how we are going to handle the situation if the file we try to
open is not there. The statement throws FileNotFoundException tells Java that we intend to pass the
error along to whatever method happens to call this one. This method accepts the name that presumably
contains one number per line of file. We then read the numbers one at a time and add them up. The sum
is returned.

Reading Text Files: BufferedReader

1 // requires some imports:

2 import java.io.BufferedReader;

3 import java.io.FileReader;

4 import java.io.IOException;

5

6 public static double sumFile(String filename) throws

IOException {

7 BufferedReader numFile;

8 double total=0.0;

9 String str;

10

11 numFile= new BufferedReader(new FileReader(filename));

12 while ((str= numFile.readLine())!=null) {

13 total= total + Double.parseDouble(str);

14 }

15 numFile.close();

16 return total;

17 }

Suppose datafile looks like this:

1.5

10.2

2.3

5.2

Expected return value: 19.2

7

The BufferedReader class can be used to read data from files. It runs much faster than using Scanner

but has the disadvantage that it can only read a single line at a time as a string. So, lines from the file may
need to be broken apart and converted to various types. The open command can generate an IOException

which must be handled. This example accepts the name of a text file that presumably contains one number
per line of the file. We then read one line at a time and put it into the string str. The value comes back a
null we know the read failed and it is time to stop reading. We convert the string to a double value and
then add it to our running total.

Saving Text Files

1 // requires some imports:

2 import java.io.FileNotFoundException;

3 import java.io.PrintStream;

4

5 public static void saveData(String filename) throws

FileNotFoundException

6 {

7 PrintStream f= new PrintStream(filename);

8 double y= 3.8234;

9

10 f.print("This is so fun!");

11 f.print("How are you?\n");

12 f.println("What do we do now?");

13 f.printf("I am am %8.1f feet tall\n",y);

14 f.close();

15 }

Expected output (in junk.txt):

This is so fun!How are you?

What do we do now?

I am 3.8 feet tall

To write to a text file use the PrintStream class which is the same type of object as System.out. So, you
can use .print(), .println(), and .printf() to write to a file just as if you were displaying it to the
screen. When you open the file by creating the PrintStream object it will create a new file if it doesn’t
exist; if the file did exist it is destroyed!

Try-Catch

1

2 int num;

3 Scanner kb= new Scanner(System.in);

4

5 try {

6 System.out.print("Enter number: ");

7 num= kb.nextInt();

8 System.out.println("You entered: "+num);

9 }

10 catch (InputMismatchException e) {

11 System.out.println("Must enter an integer");

12 System.out.println(e);

13 }

Expected output if user enters 7.

Enter number: 7

You entered: 7

Expected output if user enters
“frog”.

Enter number: frog

Must be an integer

java.util.InputMismatchException

A try-catch block can be used to prevent a program from crashing on an error condition. In this exam-
ple, if the user types a double or String instead of an int the program would normally crash with an
InputMismatchException. With the try-catch block we ask the program to try the statements listed.
Then we catch exceptions that occur using one or more catch blocks. If the listed exception occurs control
is transferred to the catch block rather than crashing. NOTE: This is not a looping structure! If you want
your program to go back and let the user try entering the number again then you need to put the try-catch
block inside a loop. NOTE: try-catch can be used to handle code that works with files so you no longer
need to announce throws FileNotFoundException in the header.

8

